Your browser doesn't support javascript.
Show: 20 | 50 | 100
Results 1 - 20 de 58
Filter
2.
J Cancer Res Clin Oncol ; 2023 Jun 10.
Article in English | MEDLINE | ID: covidwho-20240895

ABSTRACT

PURPOSE: The SARS-CoV-2 Omicron variant of concern (VOC) and subvariants like BQ.1.1 demonstrate immune evasive potential. Little is known about the efficacy of booster vaccinations regarding this VOC and subvariants in cancer patients. This study is among the first to provide data on neutralizing antibodies (nAb) against BQ.1.1. METHODS: Cancer patients at our center were prospectively enrolled between 01/2021 and 02/2022. Medical data and blood samples were collected at enrollment and before and after every SARS-CoV-2 vaccination, at 3 and 6 months. RESULTS: We analyzed 408 samples from 148 patients (41% female), mainly with solid tumors (85%) on active therapy (92%; 80% chemotherapy). SARS-CoV-2 IgG and nAb titers decreased over time, however, significantly increased following third vaccination (p < 0.0001). NAb (ND50) against Omicron BA.1 was minimal prior and increased significantly after the third vaccination (p < 0.0001). ND50 titers against BQ.1.1 after the third vaccination were significantly lower than against BA.1 and BA.4/5 (p < 0.0001) and undetectable in half of the patients (48%). Factors associated with impaired immune response were hematologic malignancies, B cell depleting therapy and higher age. Choice of vaccine, sex and treatment with chemo-/immunotherapy did not influence antibody response. Patients with breakthrough infections had significantly lower nAb titers after both 6 months (p < 0.001) and the third vaccination (p = 0.018). CONCLUSION: We present the first data on nAb against BQ.1.1 following the third vaccination in cancer patients. Our results highlight the threat that new emerging SARS-CoV-2 variants pose to cancer patients and support efforts to apply repeated vaccines. Since a considerable number of patients did not display an adequate immune response, continuing to exhibit caution remains reasonable.

3.
J Cancer Res Clin Oncol ; 2022 Jun 22.
Article in English | MEDLINE | ID: covidwho-2301338

ABSTRACT

PURPOSE: Refusal to receive SARS-CoV-2 vaccination poses a threat to fighting the COVID-19 pandemic. Little is known about German cancer patients' attitude towards and experience with SARS-CoV-2 vaccination. METHODS: Patients were enrolled between 04-11/2021. They completed a baseline questionnaire (BLQ) containing multiple choice questions and Likert items ranging from 1 ("totally disagree") to 11 ("totally agree") regarding their attitude towards vaccination and COVID-19. A follow-up questionnaire (FUQ) was completed after vaccination. RESULTS: 218 patients (43% female) completed BLQ (110 FUQ; 48% female). Most patients agreed to "definitely get vaccinated" (82%) and disagreed with "SARS-CoV-2 vaccination is dispensable due to COVID-19 being no serious threat" (82%; more dissent among men, p = 0.05). Self-assessment as a member of a risk group (p = 0.03) and fear of COVID-19 (p = 0.002) were more common among women. Fear of side effects was more common among women (p = 0.002) and patients with solid or GI tumors (p = 0.03; p < 0.0001). At FUQ, almost all (91%) reported their vaccination to be well tolerated, especially men (p = 0.001). High tolerability correlated with confidence in the vaccine being safe (r = 0.305, p = 0.003). Most patients would agree to get it yearly (78%). After vaccination, patients felt safe meeting friends/family (91%) or shopping (62%). Vacation (32%) or work (22%) were among others considered less safe (less frequent among men, p < 0.05). CONCLUSION: Acceptance of SARS-CoV-2 vaccination is high and it is well tolerated in this sensitive cohort. However, concerns about vaccine safety remain. Those and gender differences need to be addressed. Our results help identify patients that benefit from pre-vaccination consultation.

5.
Autophagy ; : 1-3, 2022 Jul 24.
Article in English | MEDLINE | ID: covidwho-2228392

ABSTRACT

The recurrence of zoonotic transmission events highlights the need for novel treatment strategies against emerging coronaviruses (CoVs), namely SARS-CoV, MERS-CoV and most notably SARS-CoV-2. Our recently performed genome-wide CRISPR knockout screen revealed a list of conserved pan-coronavirus as well as MERS-CoV or HCoV-229E-specific host dependency factors (HDF) essential during the viral life cycle. Intriguingly, we identified the macroautophagy/autophagy pathway-regulating immunophilins FKBP8, TMEM41B, and MINAR1 as conserved MERS-CoV, HCoV-229E, SARS-CoV, and SARS-CoV-2 host factors, which further constitute potential targets for therapeutic intervention by clinically approved drugs.

10.
Front Immunol ; 13: 1049070, 2022.
Article in English | MEDLINE | ID: covidwho-2198889

ABSTRACT

Despite the development of vaccines, which protect healthy people from severe and life-threatening Covid-19, the immunological responses of people with secondary immunodeficiencies to these vaccines remain incompletely understood. Here, we investigated the humoral and cellular immune responses elicited by mRNA-based SARS-CoV-2 vaccines in a cohort of people living with HIV (PLWH) receiving anti-retroviral therapy. While antibody responses in PLWH increased progressively after each vaccination, they were significantly reduced compared to the HIV-negative control group. This was particularly noteworthy for the Delta and Omicron variants. In contrast, CD4+ Th cell responses exhibited a vaccination-dependent increase, which was comparable in both groups. Interestingly, CD4+ T cell activation negatively correlated with the CD4 to CD8 ratio, indicating that low CD4+ T cell numbers do not necessarily interfere with cellular immune responses. Our data demonstrate that despite the lower CD4+ T cell counts SARS-CoV-2 vaccination results in potent cellular immune responses in PLWH. However, the reduced humoral response also provides strong evidence to consider PLWH as vulnerable group and suggests subsequent vaccinations being required to enhance their protection against COVID-19.


Subject(s)
COVID-19 Vaccines , COVID-19 , Humans , SARS-CoV-2 , COVID-19/prevention & control , Vaccination , Lymphocyte Activation
11.
Ther Adv Neurol Disord ; 15: 17562864221141505, 2022.
Article in English | MEDLINE | ID: covidwho-2162244

ABSTRACT

Background: The severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) pandemic has tremendous implications for the management of patients with autoimmune conditions such as multiple sclerosis (MS) under immune therapies targeting CD20+ B cells (aCD20). Objectives: Here, we investigated humoral and cellular immune responses, including anti-spike titers, neutralization against SARS-CoV-2 wild-type (WT), delta, and omicron variant and T cell responses of aCD20-treated relapsing-remitting MS patients following SARS-CoV-2 vaccination compared with healthy controls. Methods: Blood samples were collected within 4-8 weeks following the second vaccination against SARS-CoV-2. Sera were analyzed for anti-SARS-CoV-2 spike antibodies and neutralization capacity against pseudovirus for wild-type (WT), delta, and omicron variant. Peripheral blood mononuclear cells (PBMCs) were stimulated with a SARS-CoV-2 peptide pool and analyzed via flow cytometry. Results: The aCD20-treated MS patients had lower anti-SARS-CoV-2-spike titers, which correlated with B cell repopulation. Sera of aCD20-treated patients had reduced capacity to neutralize WT, delta, and omicron pseudoviruses in vitro. On the contrary, PBMCs of aCD20-treated patients elicited higher frequencies of CD3+ T cells and CD4+ T cells and comparable response of cytotoxic T cells, while Th1 response was reduced following restimulation with SARS-CoV-2. Conclusion: In summary, aCD20-treated patients have a reduced humoral immune response, depending on B cell repopulation, in accordance with preserved cellular immune response, suggesting partial cellular protection against SARS-CoV-2.

12.
Front Immunol ; 13: 980526, 2022.
Article in English | MEDLINE | ID: covidwho-2142008

ABSTRACT

Objective: The pandemic induced by SARS-CoV-2 has huge implications for patients with immunosuppression that is caused by disorders or specific treatments. Especially approaches targeting B cells via anti-CD20 therapy are associated with impaired humoral immune response but sustained cellular immunity. Ofatumumab is a human anti-CD20 directed antibody applied in low dosages subcutaneously, recently licensed for Multiple Sclerosis (MS). Effects of early ofatumumab treatment on alterations of immune cell composition and immune response towards SARS-CoV-2 are incompletely understood. Methods: We here investigated immune cell alterations in early ofatumumab (Ofa) treated patients and effects on humoral (titer, neutralization capacity against wild type, Delta and Omicron) and cellular immune responses in Ofa treated MS patients following a third vaccination against SARS-CoV-2 compared to healthy controls. Results: We show that a mean treatment duration of three months in the Ofa group led to near complete B cell depletion in line with altered composition of certain CD4+ T cell subpopulations such as enhanced frequencies of naive and a decrease of non-suppressive regulatory T cells (Tregs). Titer and neutralization capacity against SARS-CoV-2 variants was impaired while cellular immune response was sustained, characterized by a strong T helper 1 profile (Th1). Interpretation: In summary, low dosage ofatumumab treatment elicits sustained depletion of B cells in line with alterations of immune cells, mainly Tregs. This is associated with impaired humoral immune response towards SARS-CoV-2 vaccination but preserved, Th1 driven cellular immunity adding crucial information regarding early effects of low dosage anti-CD20 therapy on humoral and cellular immunity.


Subject(s)
COVID-19 Drug Treatment , Multiple Sclerosis , Antibodies, Monoclonal, Humanized , COVID-19 Vaccines , Humans , Immunity, Cellular , Multiple Sclerosis/drug therapy , SARS-CoV-2 , Vaccination
13.
Front Immunol ; 13: 1031254, 2022.
Article in English | MEDLINE | ID: covidwho-2119769

ABSTRACT

Emerging variants of concern (VOC) raise obstacles in shaping vaccination strategies and ending the pandemic. Vaccinated SARS-CoV-2 convalescence shapes the current immune dynamics. We analyzed the SARS-CoV-2 VOC-specific cellular and humoral response of 57 adults: 42 convalescent mRNA vaccinated patients (C+V+), 8 uninfected mRNA vaccinated (C-V+) and 7 unvaccinated convalescent individuals (C+V-). While C+V+ demonstrated a superior humoral SARS-CoV-2 response against all analyzed VOC (alpha, delta, omicron) compared to C-V+ and C+V-, SARS-CoV-2 reactive CD4+ and CD8+ T cells, which can cross-recognize the alpha, delta and omicron VOC after infection and/or vaccination were observed in all there groups without significant differences between the groups. We observed a preserved cross-reactive C+V+ and C-V+ T cell memory. An inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C+V+ was observed, as well as an inferior humoral response but preserved cross-reactive T cell memory in C+V- compared to C-V+. Adaptive immunity generated after SARS-CoV-2 infection and vaccination leads to superior humoral immune response against VOC compared to isolated infection or vaccination. Despite the apparent loss of neutralization potential caused by viral evolution, a preserved SARS-CoV-2 reactive T cell response with a robust potential for cross-recognition of the alpha, delta and omicron VOC was detected in all studied cohorts. Our results may have implications on current vaccination strategies.


Subject(s)
COVID-19 , Immunity, Humoral , Adult , Humans , SARS-CoV-2 , Convalescence , COVID-19/prevention & control , Antibodies, Viral , Vaccination , RNA, Messenger
14.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2046669

ABSTRACT

Introduction The ongoing COVID-19 pandemic situation caused by SARS-CoV-2 and variants of concern such as B.1.617.2 (Delta) and recently, B.1.1.529 (Omicron) is posing multiple challenges to humanity. The rapid evolution of the virus requires adaptation of diagnostic and therapeutic applications. Objectives In this study, we describe camelid heavy-chain-only antibodies (hcAb) as useful tools for novel in vitro diagnostic assays and for therapeutic applications due to their neutralizing capacity. Methods Five antibody candidates were selected out of a naïve camelid library by phage display and expressed as full length IgG2 antibodies. The antibodies were characterized by Western blot, enzyme-linked immunosorbent assays, surface plasmon resonance with regard to their specificity to the recombinant SARS-CoV-2 Spike protein and to SARS-CoV-2 virus-like particles. Neutralization assays were performed with authentic SARS-CoV-2 and pseudotyped viruses (wildtype and Omicron). Results All antibodies efficiently detect recombinant SARS-CoV-2 Spike protein and SARS-CoV-2 virus-like particles in different ELISA setups. The best combination was shown with hcAb B10 as catcher antibody and HRP-conjugated hcAb A7.2 as the detection antibody. Further, four out of five antibodies potently neutralized authentic wildtype SARS-CoV-2 and particles pseudotyped with the SARS-CoV-2 Spike proteins of the wildtype and Omicron variant, sublineage BA.1 at concentrations between 0.1 and 0.35 ng/mL (ND50). Conclusion Collectively, we report novel camelid hcAbs suitable for diagnostics and potential therapy. Graphical

15.
Frontiers in immunology ; 13, 2022.
Article in English | EuropePMC | ID: covidwho-2033934

ABSTRACT

Objective The pandemic induced by SARS-CoV-2 has huge implications for patients with immunosuppression that is caused by disorders or specific treatments. Especially approaches targeting B cells via anti-CD20 therapy are associated with impaired humoral immune response but sustained cellular immunity. Ofatumumab is a human anti-CD20 directed antibody applied in low dosages subcutaneously, recently licensed for Multiple Sclerosis (MS). Effects of early ofatumumab treatment on alterations of immune cell composition and immune response towards SARS-CoV-2 are incompletely understood. Methods We here investigated immune cell alterations in early ofatumumab (Ofa) treated patients and effects on humoral (titer, neutralization capacity against wild type, Delta and Omicron) and cellular immune responses in Ofa treated MS patients following a third vaccination against SARS-CoV-2 compared to healthy controls. Results We show that a mean treatment duration of three months in the Ofa group led to near complete B cell depletion in line with altered composition of certain CD4+ T cell subpopulations such as enhanced frequencies of naive and a decrease of non-suppressive regulatory T cells (Tregs). Titer and neutralization capacity against SARS-CoV-2 variants was impaired while cellular immune response was sustained, characterized by a strong T helper 1 profile (Th1). Interpretation In summary, low dosage ofatumumab treatment elicits sustained depletion of B cells in line with alterations of immune cells, mainly Tregs. This is associated with impaired humoral immune response towards SARS-CoV-2 vaccination but preserved, Th1 driven cellular immunity adding crucial information regarding early effects of low dosage anti-CD20 therapy on humoral and cellular immunity.

16.
RMD Open ; 8(2)2022 09.
Article in English | MEDLINE | ID: covidwho-2029522

ABSTRACT

OBJECTIVES: The effect of different modes of immunosuppressive therapy in autoimmune inflammatory rheumatic diseases (AIRDs) remains unclear. We investigated the impact of immunosuppressive therapies on humoral and cellular responses after two-dose vaccination. METHODS: Patients with rheumatoid arthritis, axial spondyloarthritis or psoriatic arthritis treated with TNFi, IL-17i (biological disease-modifying antirheumatic drugs, b-DMARDs), Janus-kinase inhibitors (JAKi) (targeted synthetic, ts-DMARD) or methotrexate (MTX) (conventional synthetic DMARD, csDMARD) alone or in combination were included. Almost all patients received mRNA-based vaccine, four patients had a heterologous scheme. Neutralising capacity and levels of IgG against SARS-CoV-2 spike-protein were evaluated together with quantification of activation markers on T-cells and their production of key cytokines 4 weeks after first and second vaccination. RESULTS: 92 patients were included, median age 50 years, 50% female, 33.7% receiving TNFi, 26.1% IL-17i, 26.1% JAKi (all alone or in combination with MTX), 14.1% received MTX only. Although after first vaccination only 37.8% patients presented neutralising antibodies, the majority (94.5%) developed these after the second vaccination. Patients on IL17i developed the highest titres compared with the other modes of action. Co-administration of MTX led to lower, even if not significant, titres compared with b/tsDMARD monotherapy. Neutralising antibodies correlated well with IgG titres against SARS-CoV-2 spike-protein. T-cell immunity revealed similar frequencies of activated T-cells and cytokine profiles across therapies. CONCLUSIONS: Even after insufficient seroconversion for neutralising antibodies and IgG against SARS-CoV-2 spike-protein in patients with AIRDs on different medications, a second vaccination covered almost all patients regardless of DMARDs therapy, with better outcomes in those on IL-17i. However, no difference of bDMARD/tsDMARD or csDMARD therapy was found on the cellular immune response.


Subject(s)
Antirheumatic Agents , Arthritis, Rheumatoid , COVID-19 , Janus Kinase Inhibitors , Antibodies, Neutralizing , Antirheumatic Agents/therapeutic use , Arthritis, Rheumatoid/drug therapy , COVID-19/prevention & control , COVID-19 Vaccines , Female , Humans , Immunoglobulin G/therapeutic use , Janus Kinase Inhibitors/therapeutic use , Male , Methotrexate/therapeutic use , Middle Aged , SARS-CoV-2 , Vaccination
17.
Cell Rep ; 40(7): 111214, 2022 08 16.
Article in English | MEDLINE | ID: covidwho-1966424

ABSTRACT

Vaccine-associated enhanced respiratory disease (VAERD) is a severe complication for some respiratory infections. To investigate the potential for VAERD induction in coronavirus disease 2019 (COVID-19), we evaluate two vaccine leads utilizing a severe hamster infection model: a T helper type 1 (TH1)-biased measles vaccine-derived candidate and a TH2-biased alum-adjuvanted, non-stabilized spike protein. The measles virus (MeV)-derived vaccine protects the animals, but the protein lead induces VAERD, which can be alleviated by dexamethasone treatment. Bulk transcriptomic analysis reveals that our protein vaccine prepares enhanced host gene dysregulation in the lung, exclusively up-regulating mRNAs encoding the eosinophil attractant CCL-11, TH2-driving interleukin (IL)-19, or TH2 cytokines IL-4, IL-5, and IL-13. Single-cell RNA sequencing (scRNA-seq) identifies lung macrophages or lymphoid cells as sources, respectively. Our findings imply that VAERD is caused by the concerted action of hyperstimulated macrophages and TH2 cytokine-secreting lymphoid cells and potentially links VAERD to antibody-dependent enhancement (ADE). In summary, we identify the cytokine drivers and cellular contributors that mediate VAERD after TH2-biased vaccination.


Subject(s)
COVID-19 , Vaccines , Animals , Antibodies, Viral , Cricetinae , Cytokines/metabolism , Immunization , Lung/pathology , Mice , Mice, Inbred BALB C , Th1 Cells , Th2 Cells , Vaccination
18.
Gesundheitswesen ; 84(7): 566-574, 2022 Jul.
Article in German | MEDLINE | ID: covidwho-1931523

ABSTRACT

The relevance of aerosols for the transmission of the Severe Acute Respiratory Syndrome Coronavirus Type 2 (SARS-CoV-2) is still debated. However, over time, in addition to distancing and hygiene rules, aerosol physics-based measures such as wearing face masks and ventilating indoor spaces were found to be efficient in reducing infections. In an interdisciplinary workshop "Aerosol & SARS-CoV-2" of the Association for Aerosol Research (GAeF) in cooperation with the German Society for Pneumology and Respiratory Medicine (DGP), the Professional Association of General Air Technology of the VDMA, the German Society for Virology (GfV), the Health Technology Society (GG) and the International Society for Aerosols in Medicine (ISAM) under the auspices of the Robert Koch Institute (RKI) in March 2021, the need for research and coordination on this topic was addressed. Fundamental findings from the various disciplines as well as interdisciplinary perspectives on aerosol transmission of SARS-CoV-2 and infection mitigation measures are summarized here. Finally, open research questions and needs are presented.


Subject(s)
COVID-19 , Aerosols , COVID-19/prevention & control , Germany , Humans , Masks , SARS-CoV-2
20.
Sci Rep ; 12(1): 10340, 2022 06 20.
Article in English | MEDLINE | ID: covidwho-1900653

ABSTRACT

In 2012, Middle East respiratory syndrome coronavirus (MERS-CoV) emerged in Saudi Arabia and was mostly associated with severe respiratory illness in humans. Dromedary camels are the zoonotic reservoir for MERS-CoV. To investigate the biology of MERS-CoV in camelids, we developed a well-differentiated airway epithelial cell (AEC) culture model for Llama glama and Camelus bactrianus. Histological characterization revealed progressive epithelial cellular differentiation with well-resemblance to autologous ex vivo tissues. We demonstrate that MERS-CoV displays a divergent cell tropism and replication kinetics profile in both AEC models. Furthermore, we observed that in the camelid AEC models MERS-CoV replication can be inhibited by both type I and III interferons (IFNs). In conclusion, we successfully established camelid AEC cultures that recapitulate the in vivo airway epithelium and reflect MERS-CoV infection in vivo. In combination with human AEC cultures, this system allows detailed characterization of the molecular basis of MERS-CoV cross-species transmission in respiratory epithelium.


Subject(s)
Camelids, New World , Coronavirus Infections , Middle East Respiratory Syndrome Coronavirus , Animals , Camelus , Respiratory System
SELECTION OF CITATIONS
SEARCH DETAIL